The Steepest Descent Minimization of Double-well Stored Energies Does Not Yield Vectorial Microstructures

نویسنده

  • PETR KLOUČEK
چکیده

We prove that the Steepest Descent algorithm applied to the minimization of total stored energies with rank-one related rotationally symmetric energy wells does not produce relaxing vectorial microstructures with non-trivial Young measures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems

In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...

متن کامل

The Relaxation of Non - Quasiconvex Variational IntegralsPetr

We show that the Steepest Descent Algorithm in connection with wiggly energies yields minimizing sequences that converge to a global minimum of the associated non-quasiconvex variational integrals. We introduce a multi-level innnite dimensional variant of the Steepest Descent Algorithm designed to compute complex microstructures by forming non-smooth minimizers from the smooth initial guess. We...

متن کامل

Hybrid steepest-descent method with sequential and functional errors in Banach space

Let $X$ be a reflexive Banach space, $T:Xto X$ be a nonexpansive mapping with $C=Fix(T)neqemptyset$ and $F:Xto X$ be $delta$-strongly accretive and $lambda$- strictly pseudocotractive with $delta+lambda>1$. In this paper, we present modified hybrid steepest-descent methods, involving sequential errors and functional errors with functions admitting a center, which generate convergent sequences ...

متن کامل

Iterative minimization of the Rayleigh quotient by block steepest descent iterations

The topic of this paper is the convergence analysis of subspace gradient iterations for the simultaneous computation of a few of the smallest eigenvalues plus eigenvectors of a symmetric and positive definite matrix pair (A,M). The methods are based on subspace iterations for A−1M and use the Rayleigh-Ritz procedure for convergence acceleration. New sharp convergence estimates are proved by gen...

متن کامل

On Steepest Descent Algorithms for Discrete Convex Functions

This paper investigates the complexity of steepest descent algorithms for two classes of discrete convex functions, M-convex functions and L-convex functions. Simple tie-breaking rules yield complexity bounds that are polynomials in the dimension of the variables and the size of the effective domain. Combination of the present results with a standard scaling approach leads to an efficient algor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001